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Received 18 November 1983 

Abstract. We consider regular crystal lattices in which the bonds are either diodes 
(probability p )  or insulators. The mean number of backbone bonds L B B (  p )  when averaged 
over lattice points is found to be related to the mean size of clusters S( p )  by LBB( p )  = 
zpS(p)  where z is the number of bonds directed away from any lattice site. Thus LE, 
diverges at pc with the mean size exponent y. The resistive susceptibility ,yR( p )  of Harris 
and Fisch is expanded graphically as a power series in p and it is found that term by term 
XR(p) =YR(p)[S(p)]2 where YR(p) is obtained from xR(p) by ignoring contributions 
from nodal graphs. The above results are valid for bond and site dilution in any dimension. 
For bond dilution on the square lattice we have determined YR( p )  top" and Pad6 analysis 
of the resulting series for xR(p) shows that it diverges with exponent yR=3.654*0.017. 
Using a scaling relation the exponent t for the conductivity of the infinite cluster is estimated 
to be t = 0.75 f 0.02. 

The conductivity of random resistor networks near the percolation threshold has been 
actively studied since the early work of Last and Thouless (1971). They observed that 
the conductivity Z ( p )  as measured across the faces of a cubic sample vanishes con- 
tinuously as the critical probability pc is approached from above with critical exponent 
t > 1. The precise value of t is difficult to determine and estimates range over a wide 
band of values in both two and three dimensions (Abeles et a1 1975, Derrida and 
Vannimenus 1982, Harris and Kirkpatrick 1977, Strayley 1977, Watson and Leath 
1974). The above estimates were obtained using computer simulations and depend 
on statistical analysis of the conductivity of clusters which span the sample. 

An indirect approach (Harris and Fisch 1977, Fisch and Harris 1978) to the problem 
is to obtain low density expansions in powers of p for the resistive 'susceptibility'. This 
is defined by 

where R ( r ,  p )  is the mean resistance between lattice sites in the same cluster which 
are separated by vector r. The critical exponent yR defined by 

X R ( P )  - ( P c - P ) - ' ~ ,  P+PC, (2) 

is then found by Pad6 approximant analysis and the exponent t is deduced from the 
scaling relation t = yR- y+(d -2 )v  (Harris and Fisch 1977). The coefficient of p" 
may be found exactly by consideration of clusters with at most n bonds, whereas the 
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direct method for finding t entails the calculation of the resistance of large spanning 
clusters. 

The random diode-insulator networks we shall consider here are regular lattices 
in which the nearest-neighbour bonds are either diodes with unit conductance (probabil- 
ity p )  or insulators. The diodes are oriented so that the current flow in any one of 
them has a positive component in some ‘preferred’ direction. This model was first 
studied by Redner (1982) who discovered that in two dimensions the conductivity in 
the preferred direction vanishes at pc (the critical probability for directed percolation) 
with a vertical tangent in contrast to the horizontal approach in the isotropic case. A 
Monte Carlo calculation with finite size scaling (Redner and Mueller 1982) gave 
t = 0.60* 0.10. Arora et al (1983) used a similar technique but used a scaling function 
which involved the fraction B ( p )  of ‘backbone’ bonds in the infinite cluster. They 
showed that 

B( P) = P[P(  P)I2 - ( P  - PC)’@ ( 3 )  
where p is the exponent of the percolation probability P ( p ) .  Using the value of p 
obtained by series methods (Blease 1977a) they obtained the estimate t = 0.73 * 0.10. 
Our result agrees well with the latter value. 

In this letter we extend the low density expansion work of Fisch and Harris (1978) 
to the diode-insulator problem on the square lattice with random bond removal. The 
ordinary percolation exponents for this problem as obtained by series methods (Blease 
1977a,b, De’Bell and Essam 1983a, b) are ten times more accurate than for isotropic 
percolation and a fairly definitive value of the exponent yR (and hence t )  can therefore 
be expected. The reason for this improved accuracy is that directed percolation series 
may be obtained to much greater length because of the Markovian nature of the 
problem. We first present some theoretical considerations which show how the Markov 
property simplifies the calculation of xR( p )  and leads to an exact relation between the 
mean number of backbone bonds L B B ( p )  (Coniglio 1982) and the mean cluster size 
S ( p ) .  The latter relation is similar to that of equation ( 3 )  (Arora et a1 1983). Our 
theoretical results apply to bond and site percolation on suitably directed regular 
lattices in any dimension. 

We use the ‘linked cluster’ (Essam 1970) or ‘cumulant’ (Harris and Fisch 1977) 
method which expresses R ( r ,  p )  as a weighted sum over directed two-rooted graphs. 
These graphs are subgraphs of the lattice graph GL whose vertices and edges are the 
sites and nearest-neighbour bonds of the lattice. Thus 

where T(r) is the set of two-rooted subgraphs of the lattice graph GL; the root points 
correspond to the sites 0 and r. A factor p is included for each of the e random 
elements (bonds, sites or both; the site 0 will always be assumed present with probability 
one). The weight w(g) is independent of the lattice graph GL from which g was 
derived (Essam 1970) and may be obtained by calculating the function R for g itself. 
Thus for g E T(r) 

where 
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and 7 = 1 or 0 depending on whether or not there is a directed path between the roots 
of g'; R(g')  is the resistance between the roots in the case that there is such a path 
(for the site problem only vertex subgraphs or section graphs must be included in the 
sum). The weight w ( g )  may be either calculated from the coefficient of p e  in R(g, p )  
or recursively by evaluating R(g' ,  1) = R(g')  for all the subgraphs of g. We use the 
latter method on the computer but the former is a useful theoretical tool. Thus it is 
clear that if g involves bonds which cannot carry current (dangling bonds) then w ( g )  = 0 
and we henceforth restrict T(r) to exclude such graphs. Now suppose that g is a series 
combination of g, and g, the junction of which is then a nodal point of g (these graphs 
are known as nodal). For such graphs (7R) = ( ~ 1 R 1 ) ( ~ z ) + ( ~ 1 ) ( ~ / 2 R 2 )  and equating 
coefficients of p e  gives 

w(g) = w(g*)d(gz)+ d(g*)w(gz)  (7) 
where the 'directed d-weight' d ( g )  is the weight which arises on expanding the pair 
connectedness C(g, p )  =(v). It is known (Arrowsmith and Essam 1977) that d ( g )  = 
(-1)' where c is the number of independent cycles in g. In common with d-weights 
for undirected percolation, which do not have unit modulus, the directed d-weights 
have the property d ( g )  = d ( g l ) d ( g , ) .  

These properties of the weights will now be used to express xR(r,p) in terms of 
non-nodal graphs only. We first consider the mean size expressed in terms of the pair 
connectedness (Essam 1972) 

S ( P )  = c a r ,  P) 

S ( P ) = c  c 4 g ) p '  

r 

where C ( 0 ,  p )  = 1. Expanding in powers of p 

r g e W )  
(9) 

Equations (4)-(9) are valid for both resistor and diode problems. Now let N ( r )  be 
the graphs in T(r) which are non-nodal. Since any nodal member of r(r) may be 
expressed as a series combination of a non-nodal graph g' E N ( r ' )  followed by g"E 
r ( r - r ' )  and all such combinations give rise to a distinct member of T ( r )  (this is not 
true for undirected percolation) we have 

S ( P )  = 1 +  c c c c ~(g'"g''"'p''' 
r#O r'#O g ' e N ( r ' )  g " E r ( r - r ' )  

= 1 +  d ( g ' ) p " c  d(g")p'" 
r ' # O  g ' E N ( r ' )  r" g"Er(r")  

= 1 + S N (  p ) S (  p )  
where 

is the non-nodal part of S ( p ) .  (Note that T(0) contains only the graph which is a 
single vertex for which we must take d = 1 and e = 0.) A similar decomposition of (1) 
using (7) leads to 

XR(P) = yR(P)S(P)+SN(P)XR(P) (12) 

XR( p )  = q R (  P ) [ S (  P)l2 

which combined with (10) gives 

(13) 
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where qR( p )  is defined by (1 1) with d replaced by w. The average resistance LR( p )  
is defined by Coniglio (1982) as the ratio of xR to  S and hence L R ( p )  = q R ( p ) S ( p ) .  

Coniglio defines several other effective lengths by replacing R in (6) in turn by p, 
the length of the shortest path between the roots, 7, the mean number of steps in a 
SAW between the roots, and p, the number of backbone bonds. All these quantities 
satisfy the relation leading to (7) and hence give rise to an equation of type (13) .  
Many other quantities may replace R, a further important one being the number A of 
cutting bonds (‘red’ bonds of Pike and Stanley 1981). 

In the case of hypercubic lattices p and 7 are both proportional to t, the component 
of r in the preferred direction, and hence L, and L, diverge with the index vll of the 
phrallel connectedness length. We now show that when R = p the corresponding 
length L B B ( p )  diverges with the mean size exponent y. Now 

where v , (g ’ )  = 1 or 0 according to whether or not the ith bond of g is a backbone 
bond of g’. The average ( ~ v ~ )  is therefore the probability that the ith bond is a 
backbone bond in a cluster connecting the roots. If g is non-nodal then for any bond 
i in g there must in general be a path in g between the roots which bypasses i. Since 
such a path is irrelevant in the calculation of (qv,) this quantity and hence ( ~ p )  is a 
polynomial of degree < e  and hence w B B ( g )  = 0.  The only exception is the graph with 
a single edge for which w B B ( g )  = 1, hence qBB( p )  = zp,  where z is the number of 
outward directed bonds from any vertex. This establishes that 

L B B ( p )  = Z P S ( P )  (15)  

and hence that L B B  diverges with the mean size exponent y. 
Equation (13) has only been derived term by term in the p expansion. However, 

when R is replaced by p this expansion can be avoided. The idea is best illustrated 
by deriving a similar formula for the number of backbone sites. The probability that 
site r’ belongs to the backbone of a finite cluster connecting 0 to r is C ( r ’ ,  p ) C ( r  - r ‘ ,  p )  
where C ( r ,  p )  is the probability that there is a path from 0 to r. The expected number 
of such sites is obtained by summing this probability over r’ and a final sum over r 
gives the ‘susceptibility’ xes( p ) ;  thus 

where we have used equation (8). A bond ( r ’ ,  r ‘ + e )  belongs to the backbone of a 
cluster connecting 0 to r provided that there is a path from 0 to r’ and a path from 
r’+ e to r. Here e is a nearest-neighbour lattice vector in the direction of the lattice 
bond and if there are z of these, formula (16) may be extended to give 

xBB(P) = ZP[S( p)12 (17) 

where the additional factor of p corresponds to the backbone bond itself. This result 
is equivalent to (15). 

For the Bethe lattice R and /3 are equal since there are no parallel paths and hence 
xR = xBB. For this lattice r is not defined but the above arguments hold if r is replaced 
by the number of steps from the origin. We consider a rooted Bethe lattice with z 
bonds directed away from each site and only one bond directed into each site (except 
for the root). Let Q be the probability that a given branch from the origin is finite. 
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It has been shown (Essam 1972) that 0 is the appropriate root of pQ' - Q +  1 - p  = 0. 
For p < p c ,  Q = 1 ,  but for p > p c ,  Q<1. We may use (16) and (17) even for p > p c  
with S (  p )  = Q'/( 1 - z p Q Z - l ) ,  the mean size of finite clusters, provided that a further 
factor Q-' is included for xBS and a factor Q-' for x B B .  Thus xBS, xBB and xR all 
diverge with index y B B = 2  above and below pc.  Similar results are found for the 
undirected Bethe lattice and for this problem the probability that a bond belongs to 
the backbone of an infinite cluster has been given by Larson and Davis (1982). 

We now turn to the calculation of yR for the square lattice bond problem. We 
have calculated the weights of all non-nodal subgraphs with S 1 7  edges (there are 320 
of these) and the resulting rational coefficients for qR( p )  are given in table 1. Using 

m 

"-7  
Table 1. qR( p) = 2p- 3p4-9p6+ anpn 

~~ ~ 

7 49 5 
8 -30 1 
9 1180 23 

10 -339379 3220 
11 964 792 4991 
12 -264012 16801 708 222 90 
13 72949349296779779 996 541 334 766 90 
14 -697 952 248 875 287 474 051 453 471135604209161735844 
15 461201018503342552993373187989 154114649402788374909254763 

704 97 717 60 
16 -458266765391778701509349790480 774970106110236567383758269404 

48276562436442175177 4782023424149800 
17 111887692160532124010476793421 984296267762153383879220041658 

525912249882825517075171269633 027420079272753172441801034132 
779 170 028 424 856 802 568 780 432 01 125475010828564376637200 

m 
Table 2. ,yR( p) = 1 bg". 

" - 1  

n 6, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.200 000 000 000 000 000 000 000 OOD + 01 
0.800 000 000 000 000 000 000 000 00D+01 
0.240 000 000 000 000 000 000 000 00D+02 
0.610 000 000 000 000 000 000 000 OOD +02 
0.144000000000000000000000OOD+03 
0.315 000000 000 000000 000 000 00D+03 
0.669800000000000000000000OOD+03 
0.135 520 000 000 000 000 000 000 00D+04 
0.271 090434 782 608 695 652 173 91D+04 
0.522 742 018 633 540 372 670 807 45D+04 
0.100 397 697 054 698 457 223 001 40D+05 
0.187 224 168 970 390 536651 667 15D+05 
0.349 664053 941 286075 394 551 40D+05 
0.635 311 056 113 312 955 180067 16D+05 
0.116318 108711 560621 780 16741D+06 
0.207 078 081 209 702 271 299 567 18D+06 
0.373 220 805 502 454 694 856 887 21D+06 
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the known series for S (  p) (Blease 1977b) we have obtained ,yR( p) and the coefficients, 
rounded to 26 digits, are given in table 2. To this order in p no negative flow was 
encountered in the calculation of R.  The usual Pad6 analysis gives rise to the pole- 
residue plot shown in figure 1.  From this we conclude that 

YR = 3.654 + 70Apc* 0.003 (18) 

where the central value corresponds to taking pc = 0.6446 (Blease 1977b, De’Bell and 
Essam 1983a); the uncertainty in this value is 0.0002. 

I R 3 6 5  3_I 
3.62 1 I I 1 

0 6439 0.6443 I 0.6447 0.6451 0.6455 
PC Pole 

Figure 1. Pole-residue plot for Pad6 approximants to d log ,yR( p ) .  

Redner (1982) has extended the scaling formula (3) to the diode problem and finds 

t = LR + ( d  - 1) v/I. (19) 
With LR = yR- y and using the results of De’Bell and Essam (1983a) for y, vi1 and v L  
we obtain 

(20) f = 0.750- 30Apc* 0.012. 

Taking into account the uncertainty in pc yields the results quoted in the abstract. 

The rational arithmetic used in this work was carried out with an extended precision 
arithmetic package written by J C Gilbert of the University of London Computing 
Centre. One of us (FMB) would like to thank the Ministry of Education (Pakistan) 
for financial support under the Central Overseas Training Scheme. 
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