The resistive susceptibility of random diode-insulator networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L67
(http://iopscience.iop.org/0305-4470/17/2/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:51

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The resistive susceptibility of random diode-insulator networks

F M Bhatti and J W Essam
Department of Mathematics, Westfield College, University of London, London NW3 7ST, England

Received 18 November 1983

Abstract

We consider regular crystal lattices in which the bonds are either diodes (probability p) or insulators. The mean number of backbone bonds $L_{\mathrm{BB}}(p)$ when averaged over lattice points is found to be related to the mean size of clusters $S(p)$ by $L_{\mathrm{BB}}(p)=$ $z p S(p)$ where z is the number of bonds directed away from any lattice site. Thus L_{BB} diverges at p_{c} with the mean size exponent γ. The resistive susceptibility $\chi_{\mathrm{R}}(p)$ of Harris and Fisch is expanded graphically as a power series in p and it is found that term by term $\chi_{\mathrm{R}}(p)=\Psi_{\mathrm{R}}(p)[S(p)]^{2}$ where $\Psi_{\mathrm{R}}(p)$ is obtained from $\chi_{\mathrm{R}}(p)$ by ignoring contributions from nodal graphs. The above results are valid for bond and site dilution in any dimension. For bond dilution on the square lattice we have determined $\Psi_{R}(p)$ to p^{17} and Pade analysis of the resulting series for $\chi_{\mathrm{R}}(p)$ shows that it diverges with exponent $\gamma_{\mathrm{R}}=3.654 \pm 0.017$. Using a scaling relation the exponent t for the conductivity of the infinite cluster is estimated to be $t=0.75 \pm 0.02$.

The conductivity of random resistor networks near the percolation threshold has been actively studied since the early work of Last and Thouless (1971). They observed that the conductivity $\Sigma(p)$ as measured across the faces of a cubic sample vanishes continuously as the critical probability p_{c} is approached from above with critical exponent $t>1$. The precise value of t is difficult to determine and estimates range over a wide band of values in both two and three dimensions (Abeles et al 1975, Derrida and Vannimenus 1982, Harris and Kirkpatrick 1977, Strayley 1977, Watson and Leath 1974). The above estimates were obtained using computer simulations and depend on statistical analysis of the conductivity of clusters which span the sample.

An indirect approach (Harris and Fisch 1977, Fisch and Harris 1978) to the problem is to obtain low density expansions in powers of p for the resistive 'susceptibility'. This is defined by

$$
\begin{equation*}
\chi_{\mathrm{R}}(p)=\sum_{r} R(\boldsymbol{r}, p) \tag{1}
\end{equation*}
$$

where $R(r, p)$ is the mean resistance between lattice sites in the same cluster which are separated by vector r. The critical exponent γ_{R} defined by

$$
\begin{equation*}
\chi_{\mathrm{R}}(p) \sim\left(p_{\mathrm{c}}-p\right)^{-\gamma_{\mathrm{R}}}, \quad p \rightarrow p_{\mathrm{c}}, \tag{2}
\end{equation*}
$$

is then found by Pade approximant analysis and the exponent t is deduced from the scaling relation $t=\gamma_{\mathrm{R}}-\gamma+(d-2) \nu$ (Harris and Fisch 1977). The coefficient of p^{n} may be found exactly by consideration of clusters with at most n bonds, whereas the
direct method for finding t entails the calculation of the resistance of large spanning clusters.

The random diode-insulator networks we shall consider here are regular lattices in which the nearest-neighbour bonds are either diodes with unit conductance (probability p) or insulators. The diodes are oriented so that the current flow in any one of them has a positive component in some 'preferred' direction. This model was first studied by Redner (1982) who discovered that in two dimensions the conductivity in the preferred direction vanishes at p_{c} (the critical probability for directed percolation) with a vertical tangent in contrast to the horizontal approach in the isotropic case. A Monte Carlo calculation with finite size scaling (Redner and Mueller 1982) gave $t=0.60 \pm 0.10$. Arora et al (1983) used a similar technique but used a scaling function which involved the fraction $B(p)$ of 'backbone' bonds in the infinite cluster. They showed that

$$
\begin{equation*}
B(p)=p[P(p)]^{2} \sim\left(p-p_{\mathrm{c}}\right)^{2 \beta} \tag{3}
\end{equation*}
$$

where β is the exponent of the percolation probability $P(p)$. Using the value of β obtained by series methods (Blease 1977a) they obtained the estimate $t=0.73 \pm 0.10$. Our result agrees well with the latter value.

In this letter we extend the low density expansion work of Fisch and Harris (1978) to the diode-insulator problem on the square lattice with random bond removal. The ordinary percolation exponents for this problem as obtained by series methods (Blease 1977a,b, De'Bell and Essam 1983a, b) are ten times more accurate than for isotropic percolation and a fairly definitive value of the exponent γ_{R} (and hence t) can therefore be expected. The reason for this improved accuracy is that directed percolation series may be obtained to much greater length because of the Markovian nature of the problem. We first present some theoretical considerations which show how the Markov property simplifies the calculation of $\chi_{\mathrm{R}}(p)$ and leads to an exact relation between the mean number of backbone bonds $L_{\mathrm{BB}}(p)$ (Coniglio 1982) and the mean cluster size $S(p)$. The latter relation is similar to that of equation (3) (Arora et al 1983). Our theoretical results apply to bond and site percolation on suitably directed regular lattices in any dimension.

We use the 'linked cluster' (Essam 1970) or 'cumulant' (Harris and Fisch 1977) method which expresses $R(\boldsymbol{r}, p)$ as a weighted sum over directed two-rooted graphs. These graphs are subgraphs of the lattice graph G_{L} whose vertices and edges are the sites and nearest-neighbour bonds of the lattice. Thus

$$
\begin{equation*}
R(\boldsymbol{r}, p)=\sum_{g \in \Gamma(r)} w(g) p^{e} \tag{4}
\end{equation*}
$$

where $\Gamma(\boldsymbol{r})$ is the set of two-rooted subgraphs of the lattice graph G_{L}; the root points correspond to the sites $\mathbf{0}$ and \boldsymbol{r}. A factor p is included for each of the \boldsymbol{e} random elements (bonds, sites or both; the site $\mathbf{0}$ will always be assumed present with probability one). The weight $w(g)$ is independent of the lattice graph $G_{\llcorner }$from which g was derived (Essam 1970) and may be obtained by calculating the function R for g itself. Thus for $g \in \Gamma(r)$

$$
\begin{equation*}
R(g, p)=\sum_{g^{\prime} \leq g} w\left(g^{\prime}\right) p^{e^{\prime}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
R(g, p) \equiv\langle\eta R\rangle=\sum_{g^{\prime} \leq g} \eta\left(g^{\prime}\right) R\left(g^{\prime}\right) p^{e^{\prime}}(1-p)^{e-e^{\prime}} \tag{6}
\end{equation*}
$$

and $\eta=1$ or 0 depending on whether or not there is a directed path between the roots of $g^{\prime} ; R\left(g^{\prime}\right)$ is the resistance between the roots in the case that there is such a path (for the site problem only vertex subgraphs or section graphs must be included in the sum). The weight $w(g)$ may be either calculated from the coefficient of p^{e} in $R(g, p)$ or recursively by evaluating $R\left(g^{\prime}, 1\right)=R\left(g^{\prime}\right)$ for all the subgraphs of g. We use the latter method on the computer but the former is a useful theoretical tool. Thus it is clear that if g involves bonds which cannot carry current (dangling bonds) then $w(g)=0$ and we henceforth restrict $\Gamma(r)$ to exclude such graphs. Now suppose that g is a series combination of g_{1} and g_{2} the junction of which is then a nodal point of g (these graphs are known as nodal). For such graphs $\langle\eta R\rangle=\left\langle\eta_{1} R_{1}\right\rangle\left\langle\eta_{2}\right\rangle+\left\langle\eta_{1}\right\rangle\left\langle\eta_{2} R_{2}\right\rangle$ and equating coefficients of p^{e} gives

$$
\begin{equation*}
w(g)=w\left(g_{1}\right) d\left(g_{2}\right)+d\left(g_{1}\right) w\left(g_{2}\right) \tag{7}
\end{equation*}
$$

where the 'directed d-weight' $d(g)$ is the weight which arises on expanding the pair connectedness $C(g, p)=\langle\eta\rangle$. It is known (Arrowsmith and Essam 1977) that $d(g)=$ $(-1)^{c}$ where c is the number of independent cycles in g. In common with d-weights for undirected percolation, which do not have unit modulus, the directed d-weights have the property $d(g)=d\left(g_{1}\right) d\left(g_{2}\right)$.

These properties of the weights will now be used to express $\chi_{\mathrm{R}}(r, p)$ in terms of non-nodal graphs only. We first consider the mean size expressed in terms of the pair connectedness (Essam 1972)

$$
\begin{equation*}
S(p)=\sum_{r} C(r, p) \tag{8}
\end{equation*}
$$

where $C(\mathbf{0}, p)=1$. Expanding in powers of p

$$
\begin{equation*}
S(p)=\sum_{r} \sum_{g \in \Gamma(r)} d(g) p^{e} . \tag{9}
\end{equation*}
$$

Equations (4)-(9) are valid for both resistor and diode problems. Now let $N(\boldsymbol{r})$ be the graphs in $\Gamma(r)$ which are non-nodal. Since any nodal member of $\Gamma(r)$ may be expressed as a series combination of a non-nodal graph $g^{\prime} \in N\left(r^{\prime}\right)$ followed by $g^{\prime \prime} \in$ $\Gamma\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ and all such combinations give rise to a distinct member of $\Gamma(\boldsymbol{r})$ (this is not true for undirected percolation) we have

$$
\begin{align*}
& S(p)=1+ \sum_{r \neq 0} \sum_{r^{\prime} \neq 0} \sum_{g^{\prime} \in N\left(r^{\prime}\right)} \sum_{g^{\prime \prime} \in \Gamma\left(r-r^{\prime}\right)} d\left(g^{\prime}\right) d\left(g^{\prime \prime}\right) p^{e^{\prime}} p^{e^{\prime \prime}} \\
&=1+\sum_{r^{\prime} \neq 0} \sum_{g^{\prime} \in N\left(r^{\prime}\right)} d\left(g^{\prime}\right) p^{e^{\prime}} \sum_{r^{\prime \prime}} \sum_{g^{\prime \prime} \in \Gamma\left(r^{\prime \prime}\right)} d\left(g^{\prime \prime}\right) p^{e^{\prime \prime}} \\
&=1+S^{N}(p) S(p) \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
S^{N}(p)=\sum_{r \neq 0} \sum_{g \in N(r)} d(g) p^{e} \tag{11}
\end{equation*}
$$

is the non-nodal part of $S(p)$. (Note that $\Gamma(0)$ contains only the graph which is a single vertex for which we must take $d=1$ and $e=0$.) A similar decomposition of (1) using (7) leads to

$$
\begin{equation*}
\chi_{\mathrm{R}}(p)=\Psi_{\mathrm{R}}(p) S(p)+S^{N}(p) \chi_{\mathrm{R}}(p) \tag{12}
\end{equation*}
$$

which combined with (10) gives

$$
\begin{equation*}
\chi_{\mathrm{R}}(p)=\Psi_{\mathrm{R}}(p)[S(p)]^{2} \tag{13}
\end{equation*}
$$

where $\Psi_{\mathrm{R}}(p)$ is defined by (11) with d replaced by w. The average resistance $L_{\mathrm{R}}(p)$ is defined by Coniglio (1982) as the ratio of χ_{R} to S and hence $L_{\mathrm{R}}(p)=\Psi_{\mathrm{R}}(p) S(p)$.

Coniglio defines several other effective lengths by replacing R in (6) in turn by μ, the length of the shortest path between the roots, τ, the mean number of steps in a saw between the roots, and β, the number of backbone bonds. All these quantities satisfy the relation leading to (7) and hence give rise to an equation of type (13). Many other quantities may replace R, a further important one being the number λ of cutting bonds ('red' bonds of Pike and Stanley 1981).

In the case of hypercubic lattices μ and τ are both proportional to t, the component of \boldsymbol{r} in the preferred direction, and hence L_{μ} and L_{τ} diverge with the index $\nu_{\|}$of the parallel connectedness length. We now show that when $R=\beta$ the corresponding length $L_{\mathrm{BB}}(p)$ diverges with the mean size exponent γ. Now

$$
\begin{equation*}
\beta\left(g^{\prime}\right)=\sum_{i} \nu_{i}\left(g^{\prime}\right) \tag{14}
\end{equation*}
$$

where $\nu_{i}\left(g^{\prime}\right)=1$ or 0 according to whether or not the i th bond of g is a backbone bond of g^{\prime}. The average $\left\langle\eta \nu_{i}\right\rangle$ is therefore the probability that the i th bond is a backbone bond in a cluster connecting the roots. If g is non-nodal then for any bond i in g there must in general be a path in g between the roots which bypasses i. Since such a path is irrelevant in the calculation of $\left\langle\eta \nu_{i}\right\rangle$ this quantity and hence $\langle\eta \beta\rangle$ is a polynomial of degree $<e$ and hence $w_{\mathrm{BB}}(g)=0$. The only exception is the graph with a single edge for which $w_{\mathrm{BB}}(g)=1$, hence $\Psi_{\mathrm{BB}}(p)=z p$, where z is the number of outward directed bonds from any vertex. This establishes that

$$
\begin{equation*}
L_{\mathrm{BB}}(p)=z p S(p) \tag{15}
\end{equation*}
$$

and hence that L_{BB} diverges with the mean size exponent γ.
Equation (13) has only been derived term by term in the p expansion. However, when R is replaced by β this expansion can be avoided. The idea is best illustrated by deriving a similar formula for the number of backbone sites. The probability that site \boldsymbol{r}^{\prime} belongs to the backbone of a finite cluster connecting $\mathbf{0}$ to \boldsymbol{r} is $C\left(\boldsymbol{r}^{\prime}, p\right) C\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, p\right)$ where $C(\boldsymbol{r}, p)$ is the probability that there is a path from $\mathbf{0}$ to \boldsymbol{r}. The expected number of such sites is obtained by summing this probability over \boldsymbol{r}^{\prime} and a final sum over \boldsymbol{r} gives the 'susceptibility' $\chi_{\mathrm{BS}}(p)$; thus

$$
\begin{equation*}
\chi_{\mathrm{BS}}(p)=\sum_{\boldsymbol{r}} \sum_{\boldsymbol{r}^{\prime}} C\left(\boldsymbol{r}^{\prime}, p\right) C\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, p\right)=[S(p)]^{2} \tag{16}
\end{equation*}
$$

where we have used equation (8). A bond $\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime}+\boldsymbol{e}\right)$ belongs to the backbone of a cluster connecting $\mathbf{0}$ to \boldsymbol{r} provided that there is a path from $\mathbf{0}$ to \boldsymbol{r}^{\prime} and a path from $r^{\prime}+\boldsymbol{e}$ to \boldsymbol{r}. Here \boldsymbol{e} is a nearest-neighbour lattice vector in the direction of the lattice bond and if there are z of these, formula (16) may be extended to give

$$
\begin{equation*}
\chi_{\mathrm{BB}}(p)=z p[S(p)]^{2} \tag{17}
\end{equation*}
$$

where the additional factor of p corresponds to the backbone bond itself. This result is equivalent to (15).

For the Bethe lattice R and β are equal since there are no parallel paths and hence $\chi_{\mathrm{R}}=\chi_{\mathrm{BB}}$. For this lattice \boldsymbol{r} is not defined but the above arguments hold if \boldsymbol{r} is replaced by the number of steps from the origin. We consider a rooted Bethe lattice with z bonds directed away from each site and only one bond directed into each site (except for the root). Let Q be the probability that a given branch from the origin is finite.

It has been shown (Essam 1972) that Q is the appropriate root of $p Q^{2}-Q+1-p=0$. For $p<p_{c}, Q=1$, but for $p>p_{c}, Q<1$. We may use (16) and (17) even for $p>p_{c}$ with $S(p)=Q^{2} /\left(1-z p Q^{z-1}\right)$, the mean size of finite clusters, provided that a further factor Q^{-z} is included for χ_{BS} and a factor Q^{-1} for χ_{BB}. Thus $\chi_{\mathrm{BS}}, \chi_{\mathrm{BB}}$ and χ_{R} all diverge with index $\gamma_{\mathrm{BB}}=2$ above and below p_{c}. Similar results are found for the undirected Bethe lattice and for this problem the probability that a bond belongs to the backbone of an infinite cluster has been given by Larson and Davis (1982).

We now turn to the calculation of γ_{R} for the square lattice bond problem. We have calculated the weights of all non-nodal subgraphs with $\leqslant 17$ edges (there are 320 of these) and the resulting rational coefficients for $\Psi_{R}(p)$ are given in table 1. Using

Table 1. $\Psi_{\mathrm{R}}(p)=2 p-3 p^{4}-9 p^{6}+\sum_{n=7}^{\infty} a_{n} p^{n}$.

n	$a_{n}($ Num $)$	$a_{n}($ Den $)$
7	49	5
8	-30	1
9	1180	23
10	-339379	3220
11	964792	4991
12	-26401216801	70822290
13	72949349296779779	471135604209161735844
14	-697952248875287474051453	154114649402788374909254763
15	461201018503342552993373187989	71760
	70497	774970106110236567383758269404
16	-458266765391778701509349790480	4782023424149800
	48276562436442175177	984296267762153383879220041658
17	111887692160532124010476793421	027420079272753172441801034132
	525912249882825517075171269633	125475010828564376637200
	77917002842485680256878043201	

Table 2. $\chi_{\mathrm{R}}(p)=\sum_{n=1}^{\infty} b_{n} p^{n}$.

n	b_{n}
1	$0.20000000000000000000000000 \mathrm{D}+01$
2	$0.80000000000000000000000000 \mathrm{D}+01$
3	$0.24000000000000000000000000 \mathrm{D}+02$
4	$0.61000000000000000000000000 \mathrm{D}+02$
5	$0.14400000000000000000000000 \mathrm{D}+03$
6	$0.31500000000000000000000000 \mathrm{D}+03$
7	$0.66980000000000000000000000 \mathrm{D}+03$
8	$0.13552000000000000000000000 \mathrm{D}+04$
9	$0.27109043478260869565217391 \mathrm{D}+04$
10	$0.52274201863354037267080745 \mathrm{D}+04$
11	$0.10039769705469845722300140 \mathrm{D}+05$
12	$0.18722416897039053665166715 \mathrm{D}+05$
13	$0.34966405394128607539455140 \mathrm{D}+05$
14	$0.63531105611331295518006716 \mathrm{D}+05$
15	$0.11631810871156062178016741 \mathrm{D}+06$
16	$0.20707808120970227129956718 \mathrm{D}+06$
17	$0.37322080550245469485688721 \mathrm{D}+06$

the known series for $S(p)$ (Blease 1977b) we have obtained $\chi_{\mathrm{R}}(p)$ and the coefficients, rounded to 26 digits, are given in table 2 . To this order in p no negative flow was encountered in the calculation of R. The usual Padé analysis gives rise to the poleresidue plot shown in figure 1. From this we conclude that

$$
\begin{equation*}
\gamma_{\mathrm{R}}=3.654+70 \Delta p_{\mathrm{c}} \pm 0.003 \tag{18}
\end{equation*}
$$

where the central value corresponds to taking $p_{\mathrm{c}}=0.6446$ (Blease 1977b, De'Bell and Essam 1983a); the uncertainty in this value is 0.0002 .

Figure 1. Pole-residue plot for Padé approximants to $d \log \chi_{\mathrm{R}}(p)$.

Redner (1982) has extended the scaling formula (3) to the diode problem and finds

$$
\begin{equation*}
t=\zeta_{\mathrm{R}}+(d-1) \nu_{\perp}-\nu_{\|} \tag{19}
\end{equation*}
$$

With $\zeta_{\mathrm{R}}=\gamma_{\mathrm{R}}-\gamma$ and using the results of De'Bell and Essam (1983a) for $\gamma, \nu_{\|}$and ν_{\perp} we obtain

$$
\begin{equation*}
t=0.750-30 \Delta p_{\mathrm{c}} \pm 0.012 \tag{20}
\end{equation*}
$$

Taking into account the uncertainty in p_{c} yields the results quoted in the abstract.
The rational arithmetic used in this work was carried out with an extended precision arithmetic package written by J C Gilbert of the University of London Computing Centre. One of us (FMB) would like to thank the Ministry of Education (Pakistan) for financial support under the Central Overseas Training Scheme.

References

Abeles B, Pinch H L and Gittleman J I 1975 Phys. Rev. Lett. 35 247-50
Arora B M, Barma M, Dhar D and Phani K 1983 J. Phys. C: Solid State Phys. 16 2913-21
Arrowsmith D K and Essam J W 1977 J. Math. Phys. 18 235-8
Blease J 1977a J. Phys. C: Solid State Phys. 10 917-24

- 1977b J. Phys. C: Solid State Phys. 10 3461-76

Coniglio A 1982 J. Phys. A: Math. Gen. 15 3829-44

De'Bell K and Essam J W 1983a J. Phys. A: Math. Gen. 16 385-404
1983b J. Phys. A: Math. Gen. 76 3553-60
Derrida B and Vannimenus J 1982 J. Phys. A: Math. Gen. 15 L557-64
Essam J W 1970 Proc. Camb. Phil. Soc. 67 523-34
1972 Phase Transitions and Critical Phenomena vol 2, ed C Domb and M S Green (London: Academic)
Fisch R and Harris A B 1978 Phys. Rev. B 18 416-20
Harris A B and Fisch R 1977 Phys. Rev. Lett. 38 796-9
Harris A B and Kirkpatrick S 1977 Phys. Rev. B 18 542-76
Larson R G and Davis H T 1982 J. Phys. C: Solid State Phys. 15 2327-31
Last B J and Thouless D J 1971 Phys. Rev. Lett. 27 1719-21
Pike R and Stanley H E 1981 J. Phys. A: Math. Gen. 14 L169-77
Redner S 1982 Phys. Rev. B 25 5646-55
Redner S and Muller P R 1982 Phys. Rev. B 26 5293-5
Strayley J P 1977 Phys. Rev. B 15 5733-7
Watson B P and Leath P L 1974 Phys. Rev. B 9 4893-6

